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Single-cycle electromagnetic pulses produced by oscillating electric dipoles
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We report an exact analytic solution of the Maxwell equations that is capable of describing single-cycle
electromagnetic pulses beyond the slowly varying envelope approximation. The solution is based on the
radiation field emitted by oscillating electric dipoles under the complex-source-point model. The spatiotempo-
ral evolution of single-cycle electromagnetic pulses in free space is illustrated and discussed in detail by using
the analytic solution obtained.
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I. INTRODUCTION

Recent developments in laser technology have resulte
the generation of extremely short and intense laser pul
containing only a few optical cycles@1–3#, even only one
cycle @4# and one-half cycle@5# at optical frequencies. Much
attention is therefore being paid to the problem of ultrash
pulse propagation in vacuum, dispersive linear or nonlin
media, and complicated optical systems. If the pulse dura
is much larger than the optical cycle, the pulse evolution
governed by an effective parabolic three-dimensional non
ear Schro¨dinger equation under the slowly varying envelo
approximation~SVEA! @6#. By all appearances this approx
mation cannot be applied to single-cycle pulses. In fact,
SVEA breaks down in the self-focusing and self-steepen
of a femtosecond optical pulse long before the pulse dura
approaches the carrier oscillation cycle@7–10#.

Recently, the evolution of single-cycle electromagne
pulses has attracted even more attention. Hellwarth and N
chi @11# derived the vector electromagnetic field compone
from a complex Hertz potentialẑf (rW,t) oriented in the direc-
tion of wave propagation. The real and imaginary parts of
scalar generating functionf (rW,t) are solutions of the scala
wave equation in vacuum. Hunscheet al. @12# investigated
experimentally and calculated numerically the properties
single-cycle terahertz pulses propagating through
aplanatic lens. Fenget al. @13# derived solutions of Max-
well’s equations for a transversely oriented Hertz vector
describe focused single-cycle electromagnetic pulses. T
finite energy solutions are a subset of Ziolkowski’s modifi
power spectrum pulse solutions@14#.

In contrast to previous work, we present a different a
proach to studying the evolution of a single-cycle elect
magnetic pulse beyond the slowly varying envelope appro
mation in the spatial-temporal domain in this paper. O
approach is based on the electromagnetic field emitted
oscillating electric dipoles. The electromagnetic field is
exact analytic solution of the Maxwell equations. Therefo
no slowly varying envelope approximation is required. W
assume the oscillation of the electric dipole is of Gauss
shape. The complex-source-point model is used to rem
the singular point at the origin of the coordinates.
1063-651X/2003/67~1!/016503~7!/$20.00 67 0165
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II. ELECTROMAGNETIC FIELD OF ELECTRIC DIPOLES

Let us assume a pair of electric dipoles in vacuum. T
negative charge2q is fixed at the origin of the coordinates
while the positive charge1q is located along thex axis and
is oscillating with time. Thus the time-varying electric dipo
moment can be written as

pW ~ t !5ql~ t !eW x , ~1!

wherel (t) is the distance between the negative and posi
charges andeW x is the unit vector along thex axis. The vector
potential of the electric dipole radiation field is given by@15#

AW ~x,y,z,t !5
m0

4p E
V

jW ~ t2R/c!

R
dV85

m0

4pR
@ ṗ#eW x , ~2!

where jW is the electric current density vector,R
5Ax21y21z2 is the distance from the origin of coordinate
to the observation point,c is the velocity of light in vacuum,
t2R/c is the retarded time, and@ ṗ# represents the first par
tial derivative of the electrical dipole momentp with respect
to the retarded time (t2R/c). In the following, the time
factor of each physical quantity written in shortened fo
with brackets indicates the retarded time. Under the Lore
condition¹W •AW 1]w/](c2t)50, we can derive the expressio
for the scalar potential as follows:

w~x,y,z,t !52
c2m0

4p H 2
x

cR2 @ ṗ#2
x

R3 @p#J . ~3!

Using the relations between the electromagnetic field and
potential function

EW 52¹W w2]AW /]t, ~4!

BW 5¹W 3AW , ~5!

the following expressions for the electric dipole radiati
field can be obtained@16#:
©2003 The American Physical Society03-1
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EW ~x,y,z,t !52
c2m0

4p H @ p̈#

c2R
1

@ ṗ#

cR2 1
@p#

R3 J eW x1
c2m0

4p

x

R2

3H @ p̈#

c2R
1

3@ ṗ#

cR2 1
3@p#

R3 J ~xeW x1yeW y1zeW z!,

~6!

HW ~x,y,z,t !52
c

4pR H @ p̈#

c2R
1

@ ṗ#

cR2J ~zeW y2yeW z!, ~7!

where@ ṗ# and@ p̈# represent the first and second order par
derivatives of the electrical dipole momentp with respect to
the retarded time.

There is a singular point atR50 in Eqs.~6! and ~7!. In
order to remove the singular point, we use the compl
source-point model, which was first introduced for sca
beams by Deschamps@17#. The basic idea of the complex
source-point model is as follows.

Assuming an oscillation source point placed at the cen
of real-space coordinates~0,0,0!, it can radiate the spherica
wave field

E~R!5exp~ ikR!/R, ~8!

which is the rigorous solution of the wave equation. T
point R50 is a singularity. To avoid the singularity, the lo
cation of the oscillation source point is assigned the po
C(0,0,2 iz0), and then R becomes complex, R
5Ax21y21(z1 iz0)2. In the complex-source-point mode
the spherical wave field remains a rigorous solution of
wave equation@18,19#. Under the paraxial approximation,R
becomes R5z1 iz01(x21y2)/2(z1 iz0). Substituting R
into Eq. ~8!, one obtains the Gaussian beam field@17#.

The complex-source-point method has also been app
to other beams. For example, Siegman proposed com
Hermite-Gaussian wave functions@20#; Ziolkowski obtained
Gaussian pulses by assuming a complex source point mo
at a constant speed parallel to the real axis of propaga
@21#; Cullen and Yu provided an exact theory for an op
resonator having mirrors of a specific nonspherical sh
@19#. Recently, Sheppard and Saghafi used this simple m
ematical form to analyze the electromagnetic wave bey
the slowly varying envelope approximation. They discuss
the beam mode for an electric dipole sink and source
oriented along thex axis that is a rigorous solution of Max
well’s equations@22–24#.

Now we replacez andR by z8 andR8, respectively, in the
expressions for the electric dipole radiation field Eqs.~6! and
~7! through

z85z1 iz0 , R85Ax21y21~z1 iz0!2, ~9!

wherez05pw0
2/l represents the Rayleigh range, andw0 is

the size of the beam waist. According to the resonator the
the Rayleigh range is a constant for components of the fi
with various frequencies. It does not depend on the wa
length, but is only determined by the parameters of the ca
@25#. Only whenz50 andAx21y25z0 doesR8 vanish. To
overcome this deficiency, we choose the Rayleigh range
01650
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satisfies the conditionz0.Ax21y2 on the plane ofz50.
This condition is satisfied as long as the beam spot size
much smaller than the wavelength. This condition also ex
for a spherical wave with a complex source point@17# and
the field radiated from an impulsive source at a compl
source-point location@26#.

It can be verified that in the complex-source-point mod
the electric dipole radiation fields still satisfy Maxwell
equations exactly in spite of the oscillating form of the ele
tric dipoles. The verification procedure is provided in t
Appendix. The field is capable of describing single-cyc
electromagnetic pulses beyond the slowly varying envel
approximation. As we are considering the propagation pr
erties of single-cycle pulses in free space, it is unnecessa
include the source terms of Maxwell’s equations.

III. SINGLE-CYCLE ELECTROMAGNETIC PULSES

Now we assume a pair of electric dipoles that oscilla
with time in free space. The envelope of the oscillation a
plitude is also a function of time, which is assumed to be
Gaussian shape for the sake of simplicity. Under
complex-source-point model, the electric moment of t
electric dipoles can be expressed as

@pW #5ql0 expF2
~ t2R8/c!2

2T2 Gexp@ iv0~ t2R8/c!#eW x ,

~10!

wherev05k0c is the central angular frequency of the pul
andk0 is the wave number in vacuum. The full width at ha
maximum~FWHM! of the envelope is 2A2 ln 2T. Substitut-
ing Eq. ~10! into Eqs.~6! and ~7!, we obtain the exact ex
pressions for the electric and magnetic fields of the elec
magnetic pulses emitted by the electric dipoles in free spa

EW ~x,y,z,t !5
c2m0

4p

@p#

R8 H 2~ f 11 f 2i !eW x

1
x

R82 ~ f 31 f 4i !~xeW x1yeW y1z8eW z!J , ~11!

HW ~x,y,z,t !52
c

4p

@p#

R82 H f 12
1

R82 1 f 2i J ~z8eW y2yeW z!,

~12!

where

f 15
~R82ct!2

c4T4 2
t

cT2R8
1

1

R822k0
2, ~13!

f 25
2k0~R82ct!

c2T2 1
k0

R8
, ~14!

f 35
~R82ct!2

c4T4 2
3t

cT2R8
1

3

R82 1
2

c2T22k0
2, ~15!

f 45
2k0~R82ct!

c2T2 1
3k0

R8
. ~16!
3-2
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As a direct consequence of Maxwell’s equations, the Po
ting vector of the ultrashort electromagnetic pulse can
expressed as follows:

SW ~x,y,z,t !5Re@EW ~x,y,z,t !#3Re@HW ~x,y,z,t !#, ~17!

where ‘‘Re’’ represents the real part of a complex quantit
The factor (t2R8/c) in Eqs. ~13!–~16! represents re-

tarded time if R8 is a real quantity. Under the complex
source-point model,R85Ax21y21(z1 iz0)2 is complex.
The Rayleigh rangez0 appears not only in the amplitude pa
but also in the phase part of the electromagnetic fields. F
Eqs.~11! and ~12!, we can see that the spatial and tempo
parts are coupled.

If the full width at half maximum of the envelope ap
proaches infinity, our solution will go back to previous r
sults @22#. AssumingT→`, then Eqs.~13!–~16! become

f 1'1/R822k0
2, f 2'k0 /R8, ~18!

f 3'3/R822k0
2, f 4'3k0 /R8. ~19!

Substituting Eqs.~18! and ~19! into Eqs.~11! and ~12!, we
can obtain the electromagnetic field produced by the tim
harmonic oscillating dipoles. The results are the same
those of Ref.@22#, where the beams produced by the tim
harmonic electric and magnetic dipoles were considered

From Eqs.~11!–~16!, we can see that the expressions
the electromagnetic field are very complicated. It is diffic
to reveal the evolution properties analytically via these eq
tions. Nevertheless, we can analyze the characteristics o
electric dipole moment instead of the electromagnetic fie
Setting t50, z50 in Eq. ~10!, we can get the transvers
distributions of the dipole moment as follows:

@p#5ql0 expF z0
2

2c2T2GexpF2
x21y2

2c2T2 Gexp@k0Az0
22~x21y2!#.

~20!

From Eq.~20!, we can see that the envelope of the elec
dipole moment is of Gaussian shape. The shape of the e
tromagnetic field is determined by the transverse distribu
of the electric dipole moment. We can see in the followi
calculations that the electromagnetic field is also Gaussia
shape.

Now we illustrate the propagation properties of the el
tromagnetic field with some numerical calculations. T
electric field distribution in spatial coordinates can be cal
lated based on Eq.~11!. In the calculations, the paramete
are chosen asl051064 nm, w050.8l0 , and the timet
51.5 fs. Figures 1~a! and 1~b! show the distributions of the
square of the electric field envelopeuEW u2 versus thex coor-
dinate when the pulse width~FWHM! equals 3.5 and 35 fs
respectively. The longitudinal coordinates in Figs. 1~a! and
1~b! are normalized to the maximum value. Because
electromagnetic field is almost symmetric inx andy coordi-
nates, we only drawn the distribution versus thex coordinate.
Comparing Fig. 1~a! with Fig. 1~b!, we see that the square o
the electric field envelopeuEW u2 keeps its Gaussian shape du
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ing propagation in space and the amplitude oscillates w
the propagation distance. The speed of oscillation of the
plitude with the propagation distance of a multicycle pulse
slower than that of a single-cycle pulse.

The Poynting vector of an ultrashort electromagne
pulse can be calculated based on Eq.~17!. Figures 2~a! and
2~b! show the distributions of the instantaneous energy d
sity versus thex coordinate when the pulse width~FWHM!
equals 3.5 and 35 fs, respectively. The parametersl0 , w0 ,
and t used in the calculation are the same as in Fig. 1. T
longitudinal coordinates in Figs. 2~a! and 2~b! are normal-
ized to the maximum value. From Fig. 2, we can see that
electromagnetic pulse produced by oscillating electric
poles propagates mainly along thez axis. The shape of the
instantaneous energy density remains invariant during
propagation in space. The amplitude of the instantaneous
ergy density oscillates with the propagation distance. Th
properties are similar to those of the focused single-cy
electromagnetic pulse given in Ref.@13#. Comparing Fig.
2~a! with Fig. 2~b!, we see that the change of the amplitu
of oscillation of a multicycle pulse with propagation distan
is more rapid than that of a single-cycle pulse.

From Figs. 1 and 2, we can see that the square of
electric field envelope and the instantaneous energy den
are different. These differences are caused by the follow
effects. Initially, the square of the electric field envelope do
not include the phase factor. But we can see from Eq.~17!
that the instantaneous energy density is modulated b
phase factor. Secondly, the pulse width and the oscilla

FIG. 1. Distributions of the square of the electric field envelo
for the electromagnetic pulse versusx coordinate. 2A2 ln 2T5 ~a!
3.5 and~b! 35 fs.
3-3
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frequency of the multicycle pulse are larger than those o
single-cycle pulse. Their propagation velocity is the same
the velocity of light in vacuum. The spatial distribution o
the instantaneous energy density of the multicycle puls
more complicated than that of the single-cycle pulse. And
speed of amplitude oscillation of the electric field envelo
squared changes with propagation distance for a single-c
pulse faster than for a multicycle pulse. These properties
be obtained from the following analysis of the temporal ev
lution.

Next let us discuss the temporal evolution of single-cy
pulses. From Eq.~10! the electrical dipole moment on thez
axis (x50,y50) can be expressed as

@pW #5ql0 expS p2w0
4

2l0
2c2T2 1k0z0D expF2

~ t2z/c!2

2T2 G
3expF iv0S 11

w0
2

2c2T2D S t2
z

cD GeW x . ~21!

From Eq. ~21! we can see that the oscillation angular fr
quency of the electric dipole moment isv0b1
1w0

2/(2c2T2) c instead ofv0 . That is to say, the Gaussia
beam waistw0 affects not only the amplitude but also th
frequency. With the increase of the beam waistw0 , the an-
gular frequency increases.

The temporal evolution of a single-cycle electromagne
pulse for different values of propagation distance can be
culated based on Eq.~17!. The results are drawn in Fig. 3. I

FIG. 2. Distributions of the instantaneous energy density for
electromagnetic pulse versusx coordinate. 2A2 ln 2T5 ~a! 3.5 and
~b! 35 fs.
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the calculation, we assumed the wavelengthl051064 nm,
beam waistw050.8l0 , and pulse width~FWHM! of 3.5 fs.
Figure 3 shows the distributions of the instantaneous ene
density versus timet when z5(a) 0 and~b! 0.5z0 . The
longitudinal coordinates of Fig. 3 have the same meaning
in Fig. 2. From Fig. 3, we can see that the single-cycle el
tromagnetic pulse propagates mainly along thez axis at the
speed of light in vacuum. On the plane ofz50, the pulse is
symmetric and the center of the pulse is located att50. With
increase of the propagation distance, the pulse beco
asymmetric and the center is located att5z/c. It is caused
by the derivative of the pulse with respect to the retard
time (t2z/c) @27#. During propagation, the pulse duratio
remains invariant. The instantaneous energy density does
oscillate with time in a harmonic form; its amplitude form
an envelope with Gaussian shape. If the pulse width
creases, the envelope shape of the energy density rem
invariant but the oscillation frequency increases.

The amplitude of the longitudinal coordinate at the insta
taneous timet51.5 fs in Fig. 3 is connected with the corre
sponding number in Fig. 2~a!. We can see that with the puls
propagating along thez axis, the amplitude att51.5 fs os-
cillates. This result is consistent with Fig. 2~a!. The transmis-
sion characteristics of the energy density for different valu
of the propagation distance as shown in Fig. 3 are the s
as in Ref.@14#, where a different method was used. It co
firms that the methods used in this paper are correct.

e FIG. 3. Distributions of the instantaneous energy density o
single-cycle electromagnetic pulse versus timet. z5 ~a! 0 and~b!
0.5z0 .
3-4
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Figure 4 shows the distributions of the instantaneous
ergy density versus timet based on Eq.~17! when x
5(a) 0 and~b! 3w0 . The parameters used in the calculati
arel051064 nm,w050.8l0 , z50.2z0 , and the pulse width
~FWHM! is 3.5 fs. The longitudinal coordinates are norm
ized to the maximum value. From Fig. 4, we can see t
with the increase of the lateral coordinatex the pulse width
of the single-cycle electromagnetic wave expands in tim
For different beam waists the expansion velocity of the el
tromagnetic pulse is different. The temporal expansion sp
is faster when the beam waist is smaller. The location of
pulse maximum is shifted to higher values of timet when the
lateral coordinatex increases.

IV. CONCLUSIONS

We presented an exact solution of Maxwell’s equatio
that is capable of describing single-cycle electromagn
pulses. In order to remove the singular points, we used
complex-source-point model. The spatiotemporal evolut
of a single-cycle electromagnetic pulse beyond the slo
varying envelope approximation has some unique propa
tion properties in free space. Initially, the square of the el
tric field envelopeuEW u2 remains in Gaussian shape durin
propagation in space, but the amplitude oscillates as
propagation distance increases. The evolution of the ins
taneous energy density is similar. Second, the single-c
electromagnetic pulse width and pulse shape remain inv
ant during the propagation. The instantaneous energy de
does not oscillate with time in a harmonic form; its amp

FIG. 4. Distributions of the instantaneous energy density o
single-cycle electromagnetic pulse versus timet at z50.2z0 . x5
~a! 0 and~b! 3w0 .
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tude forms an envelope with Gaussian shape. If the pu
width increases, then the oscillating frequency of the ene
density increases. Third, with increase of the lateral coo
nate x, the single-cycle electromagnetic pulse expands
time. The temporal expansion speed is faster when the b
waist is smaller. The location of the pulse maximum
shifted to higher values of timet when the lateral coordinate
x increases.
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APPENDIX

In this appendix we show that, in the complex-sourc
point model, the electric dipole radiation fields still satis
Maxwell’s equations exactly in spite of the oscillating for
of the electric dipoles.

We replace z and R by z85z1 iz0 and R8
5Ax21y21(z1 iz0)2, respectively, in the expressions fo
the electric dipole radiation fields Eqs.~6! and ~7!. For the
sake of brevity, we omit the constant coefficientc2m0/4p in
the electric and magnetic fields. Then the electromagn
field can be expressed as

EW 85@~2g11x2g2!eW x1xyg2eW y1x~z1 iz0!g2eW z#,
~A1!

BW 85m0HW 85
1

c H g1

R8
2

@P#

R84J @2~z1 iz0!eW y1yeW z#, ~A2!

where

g15
@ p̈#

c2R8
1

@ ṗ#

cR82 1
@p#

R83 , ~A3!

g25
@ p̈#

c2R83 1
3@ ṗ#

cR84 1
3@p#

R85 . ~A4!

The time factor of each physical quantity written in sho
ened form with brackets indicates the retarded timet
2R8/c. For any oscillating form of the electric dipoles, w
can obtain the following expressions:

]R8

]xi
5

xi

R8
,

]@p#

]xi
52

xi

cR8
@ Ṗ#,

~A5!
]@ ṗ#

]xi
52

xi

cR8
@ P̈#,

]@ p̈#

]xi
52

xi

cR8
@ P̂#,

wherexi can be replaced byx, y, andz1 iz0 , respectively.
From Eqs.~A3! and ~A4! we can derive the following rela
tions:

a

3-5
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]g1

]xi
52xig3 , ~A6!

]g2

]xi
52xig4 , ~A7!

where

g35
@ p̂#

c3R82 1
2@ p̈#

c2R83 1
3@ ṗ#

cR84 1
3@p#

R85 , ~A8!

g45
@ p̂#

c3R84 1
6@ p̈#

c2R85 1
15@ ṗ#

cR86 1
15@p#

R87 . ~A9!

Using ]/](z1 iz0)5]/]z, the electromagnetic field can b
obtained from Eqs.~A6!–~A9! as follows:

]Ex8

]x
5xg32x3g412xg2 ,

]Ex8

]y
5yg32x2yg4 ,

]Ex8

]z
5~z1 iz0!g32x2~z1 iz0!g4 , ~A10!

]Ey8

]x
5yg22x2yg4 ,

]Ey8

]y
5xg22xy2g4 ,

]Ey8

]z
52xy~z1 iz0!g4 , ~A11!

]Ez8

]x
5~z1 iz0!g22x2~z1 iz0!g4 ,

]Ez8

]y
52xy~z1 iz0!g4 ,

]Ez8

]z
5xg22x~z1 iz0!2g4 , ~A12!

and
.

F
s-

.
B

01650
]Bx8

]t
50,

]By8

]t
52~z1 iz0!H @ p̂#

c3R82 1
@ p̈#

c2R83J ,

]Bz8

]t
5yH @ p̂#

c3R82 1
@ p̈#

c2R83J . ~A13!

From Eqs. ~A10!–~A13!, we can derive the following
expressions:

¹W •EW 85
]Ex8

]x
1

]Ey8

]y
1

]Ez8

]z
54xg21xg32xR82g450,

~A14!

]Ez8

]y
2

]Ey8

]z
52

]Bx8

]t
50, ~A15!

]Ex8

]z
2

]Ez8

]x
5~z1 iz0!~g32g2!

5~z1 iz0!H @ p̂#

c3R82 1
@ p̈#

c2R83J 52
]By8

]t
,

~A16!

]Ey8

]x
2

]Ex8

]y
5y~g22g3!52yH @ p̂#

c3R82 1
@ p̈#

c2R83J 52
]Bz8

]t
.

~A17!

From Eqs.~A14!–~A17! we obtained two expressions fo
Maxwell’s equations:

¹W •EW 850,
~A18!

¹W 3EW 852
]BW 8

]t
.

The other two expressions for Maxwell’s equations can
verified in a similar way. Therefore, the electromagne
fields emitted by electric dipoles in the complex-source-po
model still satisfy Maxwell’s equations.
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